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Abstract
We have measured the energy and polarization dependence of anisotropic
resonant x-ray Bragg diffraction from cubic HoFe2 at glide-reflection-forbidden
settings. Azimuthal scans at the iron K-edge are found to be consistent
with calculations based on purely dipolar transitions. The possible influence
of magnetic scattering is discussed, and we set out a simple procedure for
calculating resonant intensities, based on crystal symmetry.

1. Background

Space-group extinction-rules in x-ray diffraction, for screw rotations and glide reflections,
occur when beams scattered from equivalent atoms with different positions and orientations,
cancel exactly. This relies on scattering being isotropic, which is the case for both non-resonant
scattering, and resonant scattering from atoms in highly symmetric environments. There
are, however, a great many examples of non-isotropic atomic resonances, leading to dichroic
absorption [1] and anisotropic resonant scattering [2–11]. In such cases, the extinction rules
must be treated as approximations. While absorption is governed by the overall symmetry
of a crystal, resonant diffraction is sensitive to the local symmetry of individual atoms. This
allows, for example, dipolar anisotropy to influence diffraction even in cubic crystals, as long
as the site symmetry of the resonant atoms is non-cubic.

The present work concerns space-group-forbidden reflections in a cubic crystal and,
specifically, dipole resonances from atoms at non-cubic sites. We have carried out diffraction
measurements at the iron K-shell absorption-edge resonance in cubic HoFe2 (space group
Fd3̄m), in which the iron atoms occupy sites of trigonal (rhombohedral) symmetry (3̄m), and
those of holmium take up cubic (4̄3m) positions [12]: see figure 1.

The resonant contribution to the scattering amplitude arises from the p · A interaction,
taken to second-order in perturbation theory (p and A represent the electron momentum
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Figure 1. The HoFe2 cubic unit cell. Iron tetrahedra are shown, and the threefold axis of one iron
atom is indicated by an arrowed line.

and photon vector potential operators). This leads to an electric resonant amplitude [9, 13]
expressible in terms of the position operator, r,

f (h̄ω) ∝
∑
v

〈a|r · ε′∗ e−iq′·r|bv〉〈bv|r · ε eiq·r|a〉
Ea − Ebv + h̄ω − i�/2

(1)

where ε, ε′ are the polarization unit vectors of the incident and scattered beams, � is the
core-hole lifetime and the sum runs over all intermediate states, |bv〉. Writing the exponentials
as Taylor series provides a multipole expansion of the scattering amplitude, of which the first
(pure dipolar) term is

f (h̄ω) ∝ εiε′∗j
(∑

v

〈a|rj |bv〉〈bv|ri |a〉
Ea − Ebv + h̄ω − i�/2

)
= εiε

′∗
j Tij . (2)

Here, Tij is a rank-two, energy-dependent tensor, εi and ε′j are Cartesian components of
the polarization unit vectors and we follow the Einstein convention for implied summations
in a tensor expression. Complex conjugation of the secondary beam polarization vector
will be omitted subsequently, since we employ purely real polarization vectors. Neglecting
magnetism, the scattering tensor is symmetric with respect to exchange of indices i, j . Higher-
order terms in the multipole expansion of (1) are described by tensors of higher rank, involving
the vectors q and q′ [9, 13].

The symmetric rank-two tensor outlined above contains, in general, six independent
elements, equivalent to resonance responses along three perpendicular principal axes, and
three orienting angles. For atoms in highly symmetric environments this number reduces
dramatically, and the orientation and polarization dependence of the diffracted beams is
governed largely or entirely by the symmetry of the resonant ions. The spectrum of resonant
scattering requires a detailed knowledge of the electronic wavefunctions, and is beyond the
scope of this paper.

2. Measurements and experimental results

All experimental results were obtained at the European Synchrotron Radiation Facility
using the UK CRG beamline [14], with preliminary data obtained on SRS Station 16.3,
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Daresbury Laboratory [15]. The sample, a 2 mm single-crystal cube grown by the Czochralski
method at the University of Birmingham [16], was from the same batch of material as adopted
for several previous measurements [12, 17]. The experimental layout and key parameters are
indicated in figure 2 and table 1.

Table 1. Some key experimental parameters for the present work.

Sample dimensions 2 × 2 × 2 mm3

Sample surface orientation 001
Sample reflection (mosaic) width ∼ 0.02◦

Photon linear polarization (P3) 0.99
Monochromator Si 111
Monochromator energy resolution ∼ 1 eV
Fe K-edge energy 7.112 keV
Ho L3-edge energy 8.071 keV
Polarization analyser reflection Cu 220
Polarization analyser d-spacing 1.278 Å
Polarization analyser Bragg angle @ 7.112 keV 43.0◦

Figure 2. A schematic diagram of the experimental layout.

The present measurements, performed at ambient temperature and pressure, were
concerned mainly with the 002 and 204 forbidden reflections. These are characterized by
a strong dependence on both azimuthal angle (ψ) and photon energy. For each reflection, a
series ofψ-scans (rotations about the scattering vector) was performed at the peak in the energy
spectrum, and the energy scans taken over a range of ψ values close to maximum intensity.
The highest 002 intensity (ψ = 45◦, energy ∼7.112 keV) was found to be ∼0.3% of that of
the allowed 004 at the same energy.

Both the energy and ψ-scan data were affected by strong multiple scattering, so
considerable effort was spent in order to minimize these features without prejudicing the
extracted intensities. The 002 ψ-scan integrated intensities, obtained by fitting pseudo-Voigt
functions to measured rocking curves, are shown in figure 3 after rejecting data points which
deviate significantly from the medians of peak centroid and/or width. No data were rejected
on the grounds of intensity. The results show clear fourfold symmetry, centred around ψ = 0,
with the intensity minima being small, but not zero.

Removal of multiple scattering from the resonant energy spectra was harder to achieve
since only peak intensities were recorded at each point. We were, however, able to make use
of the fact that all of the 002 and 204 spectra appeared to exhibit the same shape, apart from
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Figure 3. An azimuthal scan about the 002 reflection, at the peak of the iron K-edge resonance.
The total diffraction intensities are scaled to best match the calculated intensity curve (solid line).
ψ = 0 with the 100 vector normal to the scattering plane. Also shown is the calculated curve for
magnetic/non-magnetic interference scattering for [010] domains (arbitrary scale), based on the
magnetic structure described in section 4.

apparently random, rapid excursions, arising from multiple diffraction. After normalizing each
spectrum to the height of the second strongest resonance peak at 7.123 keV, we combined the
spectra using the following algorithm. First, calculate the mean spectrum by averaging all of
the individual spectra. Then, from the set of intensities at each energy used to compute the
mean, remove the data point furthest from the mean if it differs by more than 25% of that value.
Finally, repeat this process until there are no further changes. This approach has the advantage
that no assumptions are made about the mean intensity values, either on an absolute scale or
in relation to neighbouring points in the spectrum. The only assumptions required are that
(1) the single-scattering intensities for each energy have a symmetric probability distribution
(e.g. a normal distribution), and (2) the multiple-scattering intensities have a wider distribution,
which is flat over the ±25% acceptance window. By this method, we were able to extract the
resonance spectrum well into the ‘extended x-ray absorption’ region (figure 4). Interestingly,
the near-edge region seemed to show greater consistency than the higher energy part, although
this may be due to the presence of more multiple scattering in the (wider) upper part of the
spectrum, combined with the relatively weak resonant signal.

An absorption correction was applied to the resonance spectrum by multiplying the data
by the total attenuation coefficient, obtained from transmission through powdered HoFe2,
brushed onto adhesive tape. The variation in absorption correction was modest due to strong
attenuation by the holmium, and amounted to no more than 35%.

In addition to the total diffraction intensity, we measured the intensity through a Cu 220
polarization analyser, set to select linear polarization at angles of η = 0, 45, 90 and 135◦ with
respect to (q′ × q). (Note that η = 0◦ corresponds, in the limit of complete incident-beam
polarization, to the σ–σ channel, and η = 90◦ to σ–π ). Azimuthal (ψ) scans, performed at
the 002 and 204 reflections with each of the four polarizer settings, are shown in figures 5
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Figure 4. The energy spectrum of the total 002 diffraction intensity near the iron K-edge, corrected
for sample absorption variations. The error bar is an estimate of the uncertainty in the extended
(>∼7.14 keV) part of the spectrum. Considerably greater reproducibility was found in the near-
edge region. The energy at which the reported azimuthal scans were performed is indicated with
an arrow. Also shown is the (normalized) absorption spectrum.

and 6. The data are given to within a single scaling factor for each reflection. No absorption
corrections have been applied although, in principle, the 204 data are modified slightly by
absorption changes. No intensity was detected above the multiple-diffraction ‘background’ at
the holmium L3 resonance energy for either the 002 or 204 settings.

3. Diffraction intensities: comparison with calculations

The azimuthal dependence of total diffraction intensities (figure 3) and polarized intensities
(figures 5 and 6) are all found to be in good agreement with calculations based on the following
assumptions: (1) the dipole approximation is valid, (2) magnetic scattering is relatively weak
and (3) perturbation of the Fd3̄m crystal symmetry, due to magnetoelastic strain, is negligible.
Of these three assumptions, the first—the dipole (E1) approximation—is perhaps the most
contentious, as quadrupole (E2) excitations, leading to scattering tensors of rank three and
four, have been observed in similar experiments [4, 5, 8]. No such effects were seen here,
either in the azimuthal or energy scans.

The structure-factor tensors for electric dipole resonances at forbidden reflections, derived
in the appendix, are symmetric, traceless rank-two tensors. For the iron site in HoFe2, the tensor
elements scale with a single resonant strength, b, for example

F002 = 16ib

( 0 1 0
1 0 0
0 0 0

)
.

All intensities scale with |b|2. Calculated ψ-scan intensities can therefore be compared with
the experimental data simply by multiplying the data from each set of measurements by a
single scale factor. These factors were derived graphically, and are essentially values which
cause the largest number of data points to lie close to the calculated curves. Such a procedure
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Figure 5. Azimuthal scans about the 002 reflection, measured with the linear polarization analyser
set to angles of 0, 45, 90 and 135◦ from horizontal (σ ). The data are all scaled by a single factor
for comparison with calculated curves (solid lines). Intensities are plotted on a linear scale, with
horizontal lines representing zero for each data set.

was considered preferable to a more conventional least-squares approach because a significant
number of intensity readings are dominated by strong multiple scattering effects, and lie very
far from neighbouring points (with several outside the displayed axis limits of the graphs). The
small departures from calculated curves are likely to arise from systematic experimental errors,
including effects of saw-marks on the sample surface and imperfections in the polarization
analyser. The discrepancies do not follow the calculated forms for either magnetic scattering
(see section 4) or higher-order multipole resonances (discussed in the appendix).

It is instructive to consider the properties of the symmetric tensor that describes anisotropic
resonant scattering within the dipole approximation. The structure factor tensor can be written
as the sum of an isotropic (scalar) partFI , and a symmetric anisotropic part with zero trace, FS :

F = FI + FS. (3)

FI gives diffraction which is independent of the azimuthal angle, ψ , whereas FS produces a
strong ψ-dependence, but tends to be much smaller in magnitude. One finds that the structure
factor tensor belongs to one of four possible classes:

(1) F = 0 strictly forbidden reflection
(2) F = FI isotropic tensor—allowed reflection
(3) F = FS anisotropic tensor—weak reflection
(4) F = FI + FS mixed tensor—allowed, weakly anisotropic.

Most of the diffraction measurements in this work belong to class (3), but all four classes
are represented by Bragg reflections in HoFe2, as seen in table 2. Note that the holmium
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Table 2. Properties of the symmetric rank-two structure factor tensors for the iron and holmium
sites in HoFe2. The tables indicate non-vanishing isotropic (FI ) and symmetric anisotropic (FS )
components.

Iron Holmium

0, 0, l & l, 0, 2l reflections
l = odd 0 0
l = 2n, n = odd FS 0
l = 2n, n = even FI FI

h, h, h reflections
h = odd FI + FS FI

h = 2n, n = odd FI 0
h = 2n, n = even FI FI

structure factor tensors are purely isotropic. This is because only isotropic rank-two tensors
can exist in the cubic site symmetry (4̄3m) of the holmium atoms. The ratio of the maximum
002 intensity (ψ = 45◦) to that of the 004 (a class 2 reflection of modest intensity) is found to be

I002

I004
= sin(2θ004)

sin(2θ002)

4|b|2
|fHo − 2fFe|2 . (4)

Equating this to the measured 0.3% intensity ratio, and using tabulated atomic form factors
[18], we obtain the result, |b|max ∼ 0.5 electrons. This value is approximately twice that
reported for FeS2 [8], although the present result is very sensitive to uncertainties in f ′

Fe close
to resonance. We estimate f ′

Fe from [19] to be around −6 electrons.

4. Magnetic scattering

Although the experimental data from HoFe2 seem to be well described by a simple model
which requires only a symmetric dipole resonance at the Fe K edge, it must be remembered
that the material is ferromagnetic—a fact which is inconsistent with a strict adherence to the
Fd3̄m space-group symmetry. Here, we consider briefly the possible effects of magnetic
scattering on the measured intensities.

Assuming that the magnetic vectors in HoFe2 lie along one of the six 〈100〉 directions, the
simplest modification to the present model is a collinear magnetic structure with each Fe spin
(we consider only the iron resonance) aligned with the bulk magnetization [20]. However, such
a magnetic component would be subject to the usual extinction rules and would not produce a
signal at the forbidden 002 or 204 reflections.

One could consider an alternative structure for at least a component of the magnetism
which is consistent with the non-magnetic crystal symmetry. In order to admit the possibility
of a net magnetic moment, those (half) of the space-group operators which turn the spin away
from the magnetic vector are combined with the time-reversal operator, which reverses the spin
direction. For the rank-two case, which we consider here, the time-reversal operator transposes
the two tensor indices. This clearly effects only the antisymmetric part of the tensor, which
is identified with an axial vector along the local spin direction. Considering the iron atom at
(1/8, 3/8, 7/8), the magnetic part of the atomic scattering is found to be of the form

T = ±A
( 0 −1 1

1 0 1
−1 −1 0

)
(5)

which corresponds to a ±(1,−1,−1) spin vector, aligned with the threefold axis. The
antisymmetric structure factor tensors for the forbidden 200 reflection, resulting from
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Figure 6. As figure 5, for the 204 reflection.

space-group operators modified to produce a net moment along each of the six magnetic
vectors m, are then

F002 = ±16iA

( 0 0 −1
0 0 0
1 0 0

)
, ±16iA

( 0 0 0
0 0 −1
0 1 0

)
, 0 (6)

for m = (±1, 0, 0), (0,±1, 0) and (0, 0,±1), respectively. (Note that the magnetic scattering
vanishes when the magnetic axis is aligned with the scattering vector.) The diffraction
intensities for mixed magnetic/non-magnetic (asymmetric) tensors contain non-magnetic
terms, purely magnetic terms and terms arising from interference between the magnetic
and non-magnetic amplitudes. Although each of these exhibits a characteristic azimuth
dependence, an equal population of the six magnetic domains produces a magnetic intensity
which is independent of sample rotation.

Since the measured intensity curves (figures 3, 5 and 6) show a slight deviation from
the predictions of the non-magnetic model, one might suspect a contribution from magnetic
scattering, arising from an uneven domain distribution. However, neither the purely magnetic,
nor the interference terms, fit the bill in terms of shape (the latter are shown with the data in
figure 3). Finally, it is interesting to note that the above model for magnetism in HoFe2 would
result in some pure magnetic reflections (including the 002) in a neutron diffraction experiment.

5. Summary and conclusions

The total and linearly polarized intensities of anisotropic resonant scattering from glide-
reflection-forbidden diffraction in HoFe2 have been measured in the vicinity of the iron
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K-shell absorption edge. By far the most severe experimental complication afflicting such
measurements arises from multiple diffraction, which produces intensities at forbidden
reflection settings. We have shown that such effects, which tend to be either negligible or
to exhibit very strong and apparently random intensity fluctuations with energy and azimuth,
can be minimized in a systematic way. We have thus obtained an extended energy spectrum
of the iron K-edge resonance, as well as high-quality data on the azimuth (ψ)-dependence of
both the total and linearly polarized diffraction intensities from the 002 and 204 reflections.

All ψ-scans have been found to be in excellent accord with calculations based on pure
electric dipole resonances. We observed no evidence for quadrupolar features in either the
energy spectra or azimuth dependence. Neither was any signal detected, above the multiple
scattering ‘background’, at the 002 or 204 reflections near the holmium L3-edge resonance.

The absence of non-dipolar effects seems a little surprising, given that we find no obvious
symmetry argument to rule them out, and that they are clearly evident in, for example, α-Fe2O3

[4] and FeS2 [8]. (The latter exhibits an almost identical Fe K-edge dipole spectrum to the
present case.) One possible explanation is simply that the light elements (e.g. sulphur and
oxygen) cause little x-ray attenuation, and one observes strong intensity enhancement in the
crucial pre-edge region of the energy spectrum [21]. In HoFe2, on the other hand, strong
absorption by holmium limits this enhancement to about 35%.

While modelling anisotropic resonant scattering is not especially difficult, it can become
convoluted, particularly when exploring the effects of non-dipolar resonances. The appendices
of this paper are devoted to a fairly detailed prescription for performing such calculations
on non-magnetic crystals, requiring just the space-group generators from the International
Tables for Crystallography [22] and atomic coordinates. We show how the total and polarized
diffraction intensities can be computed for an arbitrary partial incident beam polarization
(described by Stokes parameters) for dipole, quadrupole and mixed resonances.
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Appendix. Calculation of intensities and polarization of diffraction from a resonant ion
in a non-magnetic crystal

This appendix sets out a simple, but quite general, approach to calculating the properties of
diffraction from a resonant ion in a crystal of known (non-magnetic) space-group symmetry.
Nine steps complete the calculation, starting from the properties of the relevant multipole
scattering tensor, and ending with a two-dimensional scattering matrix, which is the basis
for applying standard density matrix techniques (using Stokes parameters) to calculate the
intensity and polarization of the scattered beam.

A.1. Generate a scattering tensor of the required rank and symmetry

Resonant multipole scattering amplitudes can be usefully expressed [5, 13] in terms of a
Cartesian tensor, Tijk . . . , coupled to a set of vectors, which generally include ε, ε′, k and
k′. The rank of the tensor increases with multipolarity: rank 2 for pure dipole (E1E1), rank 3
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for mixed dipole–quadrupole (E1E2), rank 4 for pure quadrupole etc. Table A1 lists the tensor
formulae for the above processes.

Table A1. The form of the scattering amplitude, the tensor symmetries and the relationship between
the scattering tensor and scattering matrix, for dipolar, quadrupolar and mixed dipole–quadrupole
resonances [13]. All expressions apply to the tensors T and F ; underlining indicates that time-
reversal symmetry applies. The ∗ symbol marks tensor index permutations which correspond to
time reversal.

E1E1 E1E2 E2E2

Scattering amplitude εiε
′
j Tij (εiε

′
j qk − ε′i εj q ′

k)Tijk εiqj ε
′
kq

′
l Tijkl

Tensor symmetries [2, 1]∗ [3, 2, 1] [2, 1, 3, 4], [1, 2, 4, 3], [3, 4, 1, 2]∗

Scattering matrix Mij = Tij Mij = qkTijk − q ′
kTjik Mij = qkq

′
l Tikj l

The number of independent elements in these three-dimensional, rank N tensors can be
less than 3N due to inherent symmetries in the scattering processes, plus additional constraints
arising from the assumption of time-reversal invariance [13] applicable to non-magnetic states.
The net result is a tensor containing elements which are symmetric with respect to exchange
of certain indices. These are listed in table A1.

As an example, the scattering tensor for a pure dipole (E1) resonance in a non-magnetic
environment, is simply the symmetric rank-2 tensor,

T =
(
a b c

b d e

c e f

)
(A1)

where the six tensor elements are complex, energy-dependent quantities.

A.2. Generate the space group operators

The group, G, of spatial symmetry operators that act on a unit cell provide both the symmetry
of the resonant ions, and the placement of all equivalent ions in the cell. These can be computed
conveniently and quickly from the space-group generators listed in the International Tables
of Crystallography [22],

G = gn ∗ gn−1 ∗ · · · ∗ g2 ∗ g1 (A2)

with each subgroup gn formed by repeated application of the generator gn. (We neglect the
first four generators listed in the International Tables, which correspond to the identity and
three unit cell translation vectors).

For the space-group Fd3̄m one obtains seven generators, of which the first (a centring
translation) and last (an inversion) are written:

g1 = t (0, 1/2, 1/2) =
(( 1 0 0

0 1 0
0 0 1

)
,

( 0
1/2
1/2

))

g7 = (25) =
((−1 0 0

0 −1 0
0 0 −1

)
,

( 0
0
0

))
. (A3)

The group generated by (A2) contains, as expected, 2 × 2 × 2 × 2 × 3 × 2 × 2 = 192 element,
which are identified with the 192 equivalent positions for the space group.
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A.3. Generate the point group

The point group, P, for a particular site is readily obtained as the set of the rotational (proper and
improper) parts of those elements of G which preserve the position vector. Turning again to the
present example of HoFe2 there is, using origin choice 1 [22], an iron atom at (1/8, 3/8, 7/8).
The resulting 12-element point group, denoted by 3̄m, includes an inversion, a threefold axis
and a mirror plane.

A.4. Generate the atomic scattering tensor

The next task is to ensure that the general scattering tensor in step 1 is invariant with respect
to the point group P by solving the set of equations,

Pn ∗ T − T = 0. (A4)

The unitary operators Pn which form the group P transform the tensor T such that

Pn ∗ T = PnIiP
n
JjP

n
Kk · · · Tijk.... (A5)

Application of (A4) to the iron atom in HoFe2 results in the much simplified dipole scattering
tensor,

T =
(
a b b

b a b

b b a

)
(A6)

which can be broken down into the sum of an isotropic part of amplitude a, and an anisotropic
part of amplitude b. The latter represents the difference in response along, and perpendicular
to, the threefold axis.

A.5. Generate the structure factor tensor

We next consider the tensor for (kinematical) diffraction from all the symmetry-related resonant
atoms in a unit cell. For a given symmetry group G, relative atomic position x and reciprocal
lattice vector h, we sum over all the contributing tensors, taking into account differences in
orientations and phases:

Fk = 1

N

∑
n

(Rn ∗ T ) eiφ (A7)

where φ = 2πh · (Sn ∗ x). In the above expressions, the nth element Sn of the space group G
comprises a rotational part and a translational part, such that Sn ∗ x = Rnx + V n. The factor
1/N in (A7) accounts for symmetries at special positions in the unit cell, i.e., N is the number
of symmetry operators that leave the atomic position invariant.

While it is both convenient and instructive to consider the point-group symmetry (step (4))
at the resonant ion, and its effect on the scattering tensor, all symmetries are, in fact, accounted
for in the above expressions.

Applying (A7) to the present example of iron in HoFe2 (x = (1/8, 3/8, 7/8), h =
(0, 0, 2), (0, 0, 4), (2, 0, 4)) one finds

F002 = 16ib

( 0 1 0
1 0 0
0 0 0

)
F004 = −16a

( 1 0 0
0 1 0
0 0 1

)

F204 = −16ib

( 0 0 0
0 0 1
0 1 0

)
. (A8)
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Table A2. The number of independent elements in the structure-factor tensor for three resonance
processes (E1E1, E1E2, E2E2) at the reflections used for the present study.

E1E1 E1E2 E2E2

Fe 002 1 0 3
Fe 204 1 0 3
Ho 002 0 1 0
Ho 204 0 1 0

It is clear from these results that the 004 reflection is isotropic, whereas the 002 and 204
reflections are totally anisotropic, and will depend on the directions of the incident and scattered
beam polarizations with respect to the sample. (In fact, the 204 structure factor tensor, as given
above, is not quite correct since it involves a rotation of the sample and, therefore, the structure
factor tensor. The required transformation is discussed next.)

The structure-factor tensors for higher-order multipole resonances, and for the holmium
site, have been calculated in a similar way. Although the results are not reproduced here,
table A2 gives an overview by indicating the number of independent tensor elements in each
case. The table gives no indication as to why no quadrupolar processes were observed during
the present measurements.

A.6. Rotate the structure factor tensor

Adopting the coordinate system shown in figure A1, the atomic scattering tensor is expressed
in terms of components along directions defined by q, q′. However, one often needs to employ
a different frame of reference (for example, during a ψ-scan and/or when moving to a new
reflection). In order to carry out the required coordinate transformations, it is convenient to
define primary and secondary reflections, with momentum vectors h0 and h1, in terms of which
the coordinate axes are

3̂ = ĥ0 2̂ = ĥ0 × ĥ1

|ĥ0 × ĥ1|
1̂ = 2̂ × 3̂. (A9)

The scattering/structure factor tensor for an arbitrary secondary reflection, with an azimuthal
angle ψ , is then

F → R3(ψ)R2(α) ∗ F (A10)

where

R3(ψ) =
( cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

)
R2(α) =

( cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

)
(A11)

and α is the angle between h0 and h1. For an azimuthal rotation about the primary reflection,
one simply takes α = 0. In the present work, the primary and secondary reflections are taken
as 002 and 204. This means that 1̂, 2̂ and 3̂ lie conveniently along the edges of the cubic unit
cell.

A.7. Generate the three-dimensional scattering matrix

With the exception of the pure dipolar rank-two case, the scattering tensors couple to the
vectors q, q′. Since all of the necessary tensor transformations have already been performed,
it is convenient at this stage to couple the tensors to these well defined vectors. The scattering
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Figure A1. The coordinate system adopted for the present work (from [23]).

amplitude, M , is then described by a three-dimensional matrix, which depends only on the
photon polarization vectors ε, ε′. The resulting matrices for E1E1, E1E2 and E2E2 processes
are summarized in table A1.

A.8. Generate the two-dimensional scattering matrix

Calculations of intensities and scattered-beam polarization can be performed conveniently
using the two-dimensional scattering amplitude matrix [24], expressed in terms of orthogonal
linear polarization states of both the incident and scattered beams, perpendicular (σ ) and
parallel (π ) to the scattering plane.

In order to obtain the two-dimensional scattering amplitude from M , we employ two
projection matrices,

� =
(

0 1 0
sin(θ) 0 cos(θ)

)
3 =

( 0 − sin(θ)
1 0
0 cos(θ)

)
(A12)

in terms of which the 2D scattering amplitude matrix is

G = �M3. (A13)

Referring again to the 002 and 004 reflections of HoFe2, we find, for a dipolar resonance,

G002 = 16ib

(
sin(2ψ) − sin(θ) cos(2ψ)

sin(θ) cos(2ψ) sin2(θ) sin(2ψ)

)
G004 = −16a

(
1 0
0 cos(2θ)

)
.

The 004 matrix has the familiar form for isotropic scattering (arising from the product of the
projection matrices in (A12)). On the other hand, the scattering matrix for 002 depends on
the azimuthal orientation of the sample. For ψ = 0 only off-diagonal elements are present,
indicating a complete rotation of the linear polarization states. At ψ = ±π/4 the matrix
is diagonal, with no polarization rotation. The scattering matrix for the 204 reflection more
complex, depending on θ , ψ and α.

A.9. Intensity calculations

Armed with the appropriate scattering matrix, we can now employ standard techniques for
calculating the diffracted intensity with an arbitrary (partial) beam polarization. To this end,
we write the polarization density matrix for the incident beam [24] as

µ = 1

2

(
1 + P3 P1 − iP2

P1 + iP2 1 − P3

)
(A14)
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whereP1,2,3 are, respectively, the degrees of linear polarization at 45◦ from a plane of scattering,
the mean helicity (circular polarization), and linear polarization normal to the scattering plane.
The kinematical diffraction intensity for any polarization state is then simply the trace of the
product of three matrices,

I ∝ Tr(GµG†). (A15)

where similarly, the Stokes parameter Pi for the scattered beam is

Pi = Tr(σiGµG†)

Tr(GµG†)
(A16)

where † indicates a Hermitian conjugate and the Pauli matrices, σi , are defined in [24].
We are now able to completely characterize the intensity and polarization of the diffracted

beam, with any sample orientation. While the expressions evaluated via (A15) and (A16)
are, in general, too lengthy to be usefully expanded on paper, some simplified cases are more
manageable. Taking P1 = P2 = 0, P3 = +1, we find

I002 = (16b)2(1 − cos2(θ) cos2(2ψ))

which, for small values of θ , reduces to I002 ∝ sin2(2ψ). (This can be compared with the
results in figure 3.)

The final calculation of interest is of the diffracted intensity which passes though a (less
than perfect) linear polarization analyser. The response of such a device, based on kinematic
diffraction through angles close to 90◦, is outlined in [25], and takes the form of a second
scattering amplitude matrix,

A =
(

cos(η) − sin(η)
cos(2φ) sin(η) cos(2φ) cos(η)

)
(A17)

where φ is the Bragg angle for the analyser crystal, and η is the angle between the scattering
planes of the sample and analyser. The new scattering matrix simply operates onG to provide
the net scattering amplitude matrix for sample and analyser, i.e. G → AG, leading to an
intensity of the form

I ∝ Tr(AGµG†A†). (A18)
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